Spectral and Timing Properties of IGR J17091–3624 in the Rising Hard State During Its 2016 Outburst (2024)

Related Papers

The 2009 outburst of IGR J17511-3057 as observed by SWIFT and RXTE

2011 •

Askar Ibragimov

The twelfth accretion-powered millisecond pulsar, IGR J17511-3057, was discovered in September 2009. In this work we study its spectral and timing properties during the 2009 outburst based on Swift and RXTE data. Our spectral analysis of the source indicates only slight spectral shape evolution during the entire outburst. The equivalent width of the iron line and the apparent area of the blackbody emission associated with the hotspot at the stellar surface both decrease significantly during the outburst. This is consistent with a gradual receding of the accretion disc as the accretion rate drops. The pulse profile analysis shows absence of dramatic shape evolution with a moderate decrease in pulse amplitude. This behaviour might result from a movement of the accretion column footprint towards the magnetic pole as the disc retreats. The time lag between the soft and the hard energy pulses increase by a factor of two during the outburst. A physical displacement of the centroid of the accretion shock relative to the blackbody spot or changes in the emissivity pattern of the Comptonization component related to the variations of the accretion column structure could cause this evolution. We have found that IGR J17511-3057 demonstrates outburst stages similar to those seen in SAX J1808.4-3658. A transition from the "slow decay" into the "rapid drop" stage, associated with the dramatic flux decrease, is also accompanied by a pulse phase shift which could result from an appearance of the secondary spot due to the increasing inner disc radius.

View PDF

Monthly Notices of The Royal Astronomical Society

The 2009 outburst of accreting millisecond pulsar IGR J17511-3057 as observed by Swift and RXTE

2011 •

Askar Ibragimov

The twelfth accretion-powered millisecond pulsar, IGR J17511-3057, was discovered in September 2009. In this work we study its spectral and timing properties during the 2009 outburst based on Swift and RXTE data. Our spectral analysis of the source indicates only slight spectral shape evolution during the entire outburst. The equivalent width of the iron line and the apparent area of the blackbody emission associated with the hotspot at the stellar surface both decrease significantly during the outburst. This is consistent with a gradual receding of the accretion disc as the accretion rate drops. The pulse profile analysis shows absence of dramatic shape evolution with a moderate decrease in pulse amplitude. This behaviour might result from a movement of the accretion column footprint towards the magnetic pole as the disc retreats. The time lag between the soft and the hard energy pulses increase by a factor of two during the outburst. A physical displacement of the centroid of the accretion shock relative to the blackbody spot or changes in the emissivity pattern of the Comptonization component related to the variations of the accretion column structure could cause this evolution. We have found that IGR J17511-3057 demonstrates outburst stages similar to those seen in SAX J1808.4-3658. A transition from the "slow decay" into the "rapid drop" stage, associated with the dramatic flux decrease, is also accompanied by a pulse phase shift which could result from an appearance of the secondary spot due to the increasing inner disc radius.

View PDF

The Astrophysical Journal

Spectral and Timing Analysis of NuSTAR and Swift/XRT Observations of the X-Ray Transient MAXI J0637–430

2021 •

Jiachen Jiang

View PDF

Monthly Notices of the Royal Astronomical Society

NICER observations of the black hole candidate MAXIJ0637–430 during the 2019–2020 outburst

2021 •

Arghajit Jana

We present detailed timing and spectral studies of the black hole candidate MAXI J0637–430 during its 2019–2020 outburst using observations with the Neutron Star Interior Composition Explorer (NICER) and the Neil Gehrels Swift Observatory. We find that the source evolves through the soft-intermediate, high-soft, hard-intermediate, and low-hard states during the outburst. No evidence of quasi-periodic oscillations is found in the power-density spectra of the source. Weak variability with fractional rms amplitude ${\lt}5{{\ \rm per\ cent}}$ is found in the softer spectral states. In the hard-intermediate and hard states, high variability with the fractional rms amplitude of ${\gt}20{{\ \rm per\ cent}}$ is observed. The 0.7–10 keV spectra with NICER are studied with a combined disc-black-body and nthcomp model along with the interstellar absorption. The temperature of the disc is estimated to be 0.6 keV in the rising phase and decreased slowly to 0.1 keV in the declining phase. The dis...

View PDF

Proceedings of 7th INTEGRAL Workshop — PoS(Integral08)

Long term multi-wavelength observations campaign of IGR J17091-3624 and IGR J17098-3628, two transient black hole candidates discovered by INTEGRAL: latest results

Pietro Ubertini

View PDF

Research in Astronomy and Astrophysics

Accretion properties of MAXI J1813-095 during its failed outburst in 2018

2021 •

Arghajit Jana

We present the results obtained from detailed timing and spectral studies of a black hole candidate MAXI J1813–095 using Swift, NICER, and NuSTAR observations during its 2018 outburst. The timing behavior of the source is mainly studied by examining NICER light curves in the 0.5–10 keV range. We did not find any signature of quasi-periodic oscillations in the power density spectra of the source. We carry out spectral analysis with a combined disk blackbody & power law model, and physical two-component advective flow (TCAF) model. From the combined disk blackbody & power-law model, we extracted thermal and non-thermal fluxes, photon index and inner disk temperature. We also find evidence for weak reflection in the spectra. We have tested the physical TCAF model on a broadband spectrum from NuSTAR and Swift/XRT. The parameters like mass accretion rates, the size of Compton clouds and the shock strength are extracted. Our result affirms that the source remained in the hard state during...

View PDF

Multiwavelength observations of the black hole transient Swift J1745-26 during the outburst decay

Tolga Guver

We characterized the broad-band X-ray spectra of Swift J1745-26 during the decay of the 2013 outburst using INTEGRAL ISGRI, JEM-X and Swift XRT. The X-ray evolution is compared to the evolution in optical and radio. We fit the X- ray spectra with phenomenological and Comptonization models. We discuss possible scenarios for the physical origin of a ~50 day flare observed both in optical and X- rays ~170 days after the peak of the outburst. We conclude that it is a result of enhanced mass accretion in response to an earlier heating event. We characterized the evolution in the hard X-ray band and showed that for the joint ISGRI-XRT fits, the e-folding energy decreased from 350 keV to 130 keV, while the energy where the exponential cut-off starts increased from 75 keV to 112 keV as the decay progressed.We investigated the claim that high energy cut-offs disappear with the compact jet turning on during outburst decays, and showed that spectra taken with HEXTE on RXTE provide insufficient...

View PDF

Journal of High Energy Astrophysics

Timing analysis of Swift J1658.2–4242's outburst in 2018 with Insight-HXMT, NICER and AstroSat

2019 •

WEICHUN JIANG

View PDF

Bulletin of The Astronomical Society of India

Spectral and timing evolution of GRO J1655-40 during its outburst of 2005

2008 •

Dipak Debnath

In a recent outburst which lasted for 260 days, the black hole candidate GRO J1655-40 exhibited a behaviour similar to its last outburst observed almost eight years ago. We analyze a total of 150 observational spells in 122 days of data spreaded over the entire outburst phase of Feb. 2005 to Oct. 2005. From our study, a comprehensive understanding of the detailed behaviour of this black hole candidate has emerged. Based on the degree of importance of the black body and the power-law components we divide the entire episode in four spectral states, namely, it hard, soft, very soft and it intermediate. Quasi-Periodic oscillations (QPOs) were found in two out of these four states, namely, in the hard and the intermediate states. In the hard state, at the rising phase of the outburst, QPO frequency ranged from 0.034 - 17.78Hz and the spectra was fitted by a disk black body, power-law and iron emission line at 6.2 - 6.5 keV. In the intermediate state, QPOs vary from 13.17Hz to 19.04Hz and the QPO frequency modulation in this state was not significant. The spectra in this state are well fitted by the disk black body and the power-law components. In the hard state of the declining phase of the outburst, we found QPOs of decreasing frequency from 13.14 Hz to 0.034 Hz. The spectra of this state were fitted by a disk black body and power-law components, but in the initial few days a cooler Comptonized component was required for a better fit. In the soft/very soft states, the spectral states are mostly dominated by the strong disk black body component.

View PDF
Spectral and Timing Properties of IGR J17091–3624 in the Rising Hard State During Its 2016 Outburst (2024)
Top Articles
Latest Posts
Article information

Author: Velia Krajcik

Last Updated:

Views: 6638

Rating: 4.3 / 5 (74 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Velia Krajcik

Birthday: 1996-07-27

Address: 520 Balistreri Mount, South Armand, OR 60528

Phone: +466880739437

Job: Future Retail Associate

Hobby: Polo, Scouting, Worldbuilding, Cosplaying, Photography, Rowing, Nordic skating

Introduction: My name is Velia Krajcik, I am a handsome, clean, lucky, gleaming, magnificent, proud, glorious person who loves writing and wants to share my knowledge and understanding with you.